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ANGULAR RESOLUTION OF COHERENT AND
NONCOHERENT SOURCES

INTRODUCTION

When attempting to resolve targets, one can either resolve them in angle or range or a combina-
tion of both coordinates. However, the range coordinate is a much more powerful discriminant for
separating targets. For example, two targets separated by 1000 ft are separated by two 1-As pulsewidths
but by only 1/20 of a 20 beamwidth at a range of 100 nmi. On the other hand, when attempting to
resolve radiating sources (e.g. jammers), one must resolve them in angle.

The probability of resolving sources is not only a function of their separation but also a function
of their strengths and phase differences. There have been many articles written on resolution and
reprints of some of the most important ones can be found in Ref. 1. In an early article Ksienski and
McGhee [21, using a decision theoretic approach, indicate that targets within a quarter of a beamwidth
can be resolved. Lately, the problem of angular resolution has been investigated by using superresolu-
tion techniques [3]. All of these investigations solve the problem by using estimation approaches. We
approach the resolution problem as a binary-hypothesis problem where the two hypothesis are:

* HI: One Source Present
* H2 : Two Sources Present

The development is similar to the one used for the range resolution of targets [4].

GENERALIZED LIKELIHOOD RATIO TEST-NONCOHERENT SOURCES

We now formulate the resolution problem as a binary-hypothesis test. The received samples,
from the two sources impinging on the array elements shown in Fig. 1, are

Xb, = nx, + Aj 1 cos (0j, + r(i-1) sin 01 )

+ AJ2 cos ('OJ2 + r (i -1) sin 02),
and(1

Y = flyV + A11 sin (+j1 + 1r (i -1) sin Oi)

+ Aj2 sin (Oj2 + 'r(i - 1) sin 02),

where

* ~Xi and Y~j are the inphase and quadrature samples from the ith element and jth range
cell,

* ~nx and ny are independent inphase and quadrature Gaussian noise samples with mean
zero and variance ar2,

* Aj1 and Aj2 are source amplitudes in the jth range cell,
* 0j, and kj2 are the phase angles in the jth range cell,
* 01 and 02 are the angles of arrival, and
* the receiver elements are 1/2 wavelength apart.

Manuscript approved March 7, 1984.
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SOURCE #1 SOURCE #2

Fig. I - Signals from two sources received
by an 8-element linear array

0 0 0 0 0 0 0 0o

ARRAY ELEMENTS

The angular resolution problem is equivalent to deciding which hypothesis is true:

HI: Aj 1>0and Aj 2 =0

or

H2 : Aj1 > 0 and Aj2 > 0-

If (Ajl, Aj 2, 'j], Oj2,F 01, 021 are all known, the optimal detector (in the Neyman Pearson sense) is the
likelihood ratio. Since in the problem of interest the parameters (A11, A12, OJI, Oj2, 01, 021 are un-
known, in the likelihood ratio we replace the parameters with their maximum likelihood estimates.

The maximum-likelihood estimates are the values of the parameters which minimize the square
error

m n
L = I (Xe, - A1 cos (djlI + 1r(i - 1) sin 0 ) - AJ2 cos (Oj2 + V(i -1) sin 02))2

J1i-I

m n
+ I j (Y 1 - AjI sin (0jl + 7r(i - 1) sin 01) -Aj 2 sin (Oj2 + V(i - 1) sin 02))2, (2)

1-1 1-1

where n is the number of array elements and m is the number of range cells. Making the following
substitutions;

By = Aj1 cos jl,

Cj = Aj2 sin 0jI,

Wj = cos (ir(i - 1) sin 01),

U, = sin (ir(i - 1) sin 0 ),

Dj = A12 cos 0j2,

Ej = Aj2 sin 0 j2,

Si = cos (ir(i - 1) sin 02),

and

T. = sin (r(i- 1) sin 02),

2
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Eq. (2) can be written as
m n

L = F ; (Xvj- BjWi + C U - Dj Si + Ej T,)

m n
+ ; (Yij -Cj W, - B Uj - Ej S,- DJ T,) (3)

For any given value of 'k and 02, W,, U, S, and T, are known, and the maximum-likelihood esti-
mates of Bj, Cj, Dj, and Ej can be found by solving the equations

aL = aL = L = 8L = 01=1 , m.
aBsj ac, D1 E M

The Appendix of this report shows that the solutions for the one source case (that is, assuming HI is
true) are

Dj = E= O,

Bj = 1; (WXj + U, Yj)ln,

and

(4)

In the Appendix it is also shown
true) are

n
Cy= ; M Yu UXv) / n.

that the solutions for the two-source case (that is, assuming H2 is

Bj= (nHj-FJj- GK1)/(n2 -F 2 - G2),
Cj= (n1j + GJj-FK)I(n2-F2 - G2)
D= (nJj - FHj + GI))/(n2 - F2 - G2), (5)

and

E = (nKj-GHj-FI)/(n 2 -F2_ -G 2),
where

F=

G -

Hj =

Ii =

JI 

n
; (WISi + UT

n

y (USYSi- W+ TY),
1-1

; (Wj Xj + U, YJ),

I (W, Y'j- U, Xj),
i-I

I;(S X'j+ T, Yj),

and
n

Kj = T, (Si Yu - T, X).
1-1

A direct search technique [5] is used to estimate the source directions 01 and 02.

3
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Finally, the log likelihood ratio can be written as

A= Min IL}- Min {L}. (7)
11,ByCi 11,02,B,,Cj,Dj,Ej

Dj- j- 0

Calculation of the log likelihood involves two minimizations. For the first, one searches on 01 and uses
Eq. (4) for the other parameters. For the second, one searches on 01 and 02 and uses Eq. (5) for the
other parameters. Previous work [41 on range resolution indicate that results similar to those obtained
with Eq. (7) can be obtained by using only the first term. Consequently, we also evaluate

A' = MIN (LI.
0 , ,Bp Cj

Dj- j- 0

This procedure is equivalent to locating the radiating source which minimizes the square error and then
comparing the minimum square error to a threshold.

To proceed with a hypothesis test, it is first necessary to calculate a threshold to yield a desired
probability of false alarm equal to a. The thresholds T and t are set so that

P. (A > TIHJI = a

and

P,(A' > T|JHIJ a.
In this report we have selected a = 0.01. Because of this high false-alarm rate, Monte Carlo simula-
tions can be used to estimate T and T. Two thousand repetitions were run for the case where there
were n = 8 array elements and m = 32 range cells. The signal-to-noise ratio (S/N) was 20 dB at the
output of the antenna and the signal exhibited independent Rayleigh fluctuations range cell to range
cell. For each repetition the jammer location was located randomly (uniformly distributed) within the
main beam of the array. The estimated values for the threshold were 523 for T and 103 for T.

PROBABILITY OF RESOLUTION-NONCOHERENT SOURCES

The probability of resolving two Rayleigh fluctuating sources at a false-alarm rate of a = 0.01 was
found by simulation and is shown in Figs. 2 and 3 for the likelihood ratio and the one-term approxima-
tion of the likelihood ratio respectively. Each figure shows the probability of resolution as a function of
S/N for source separations of 0.1, 0.2, 0.3, 0.4, and 0.5 beamwidths. After comparing Figs. 2 and 3,
one concludes that the approximation to the likelihood ratio is only 1 or 2 dB worse than the likelihood
ratio results. Figure 4 compares the likelihood results with those obtained [3] for an adaptive array,
linear prediction least mean square superresolution algorithm. The likelihood results correspond to a
0.9-probability of resolution. The linear prediction results correspond to the appearance of a double
peak. Furthermore, the number of range cells is variable for the linear prediction method-enough
cells are used so that the asymptotic behavior is obtained. (The performance does not increase with the
number of range cells since the method has an inherent noise bias. A nonbiased eigen-analysis algo-
rithm [6] would have improved performance.) For sources separated by 0.1° beamwidth, the likelihood
approach requires approximately 15 dB less S/N. For larger separations, the difference is less.

PROBABILITY OF RESOLUTION-COHERENT SOURCES

If the two sources are coherent (for instance, one source is just a multipath bounce), the signals
are not independent, but are related by

Ai2 = pA4l

4
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0 5 10 15 20
S/N (dB)

25

Fig. 2 - Probability of resolving two noncoherent Rayleigh fluctuating sources as a function of
the S/N at the output of the array. Generalized likelihood ratio procedure; source separations
are 0.1, 0.2, 0.3, 0.4, and 0.5 beamwidth.
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Fig. 3 - Probability of resolving two noncoherent Rayleigh fluctuating sources
as a function of the S/N at the output of the array. Approximation to general-
ized likelihood ratio procedure; source separations are 0.1, 0.2, 0.3, 0.4, and 0.5
beamwidth.
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Fig. 4 - Comparison of the resolution capability of the generalized
likelihood ratio test with a superresolution estimating algorithm

and

4J2 = ojl +13 + (n - 1)ir (sin 01- sin 02)/2. (8)

This complicated phase equation is required so that the phase difference is /3 at the center of the aper-
ture. For the noncoherent case, we minimized L [Eq. (2)] with respect to 4m + 2 parameters:
(Ail, AJ2, 0j1, Oj2; i = 1, ... , m), 61 and 02. However, we were able to solve for the 4m parameters
in terms of 0I and 02. Consequently, only a two-dimensional search was required. For the coherent
case, we must minimize L, Eq. (2), with respect to 2m + 4 parameters: (Ajl, OjI; = 1, ... , m),
p, /3, 0I, and 02. In this case, one would be able to solve for the 2m parameters in terms of p, /3, 01,
and 02. Consequently, a four-dimensional search would be required and this would require a rather
long computation time. To avoid this long computation, we will use the likelihood for noncoherent
sources for the coherent source case. Obviously, this is a suboptimal procedure.

The probability of resolving two coherent, Rayleigh fluctuating sources at a false alarm rate of
0.01, using the likelihood ratio for noncoherent sources, was found by simulation and is shown in Figs.
5 and 6 for phase differences of /3 = 0 ° and /3 = 90 °. Figures 7 to 10 show the results for the one-term
approximation to the like lihood ratio for noncoherent sources for phase differences of
IS = 0 °, , = 45 °, 3 =90°, and /3 = 180 °. Comparing the results for the two tests, one concludes that
the likelihood ratio is between 2 and 4 dB better than the one-term approximation of the likelihood
ratio.
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Fig. 5 - Probability of resolving two coherent, Rayleigh fluctuating sources as a function of the
S/N at the output of the array. Generalized likelihood ratio procedure; source separations are
0.2, 0.3, 0.4, and 0.5 beamwidth. Phase difference is 0°.
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Fig. 7 - Probability of resolving two coherent, Rayleigh fluctuating sources as a func-

tion of the S/N at the output of the array. Approximation to generalized likelihood
ratio procedure; source separations are 0.2, 0.3, 0.4, and 0.5 beamwidth. Phase

difference is O0.
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Fig. 9 - Probability of resolving two coherent, Rayleigh fluctuating sources as a func-
tion of the S/N at the output of the array. Approximation to generalized likelihood
ratio procedure; source separations are 0.1, 0.2, 0.3, 0.4, and 0.5 beamwidth. Phase

difference is 90°.
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Fig. 10 - Probability of resolving two coherent, Rayleigh fluctuating sources as a func-
tion of the S/N at the output of the array. Approximation to generalized likelihood
ratio procedure; source separations are 0.1, 0.2, 0.3, 0.4, and 0.5 beamwidth. Phase
difference is 1800.
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SUMMARY

The problem of resolving radiating sources in angle is formulated as a binary hypothesis test. A
generalized likelihood ratio test was developed for noncoherent sources and used to resolve both non-
coherent and coherent sources. Two 20-dB noncoherent Rayleigh fluctuating sources separated by 0.1
beamwidth can be resolved at a resolution probability of 0.9 and at a false alarm rate of 0.01 by using
samples from an 8-element array and 32 range cells. The likelihood method was compared and found
to be superior to a linear predictive least mean square superresolution estimation algorithm. A one-
term approximation to the generalized likelihood ratio, which is equivalent to the square error residue
from fitting one source to the data, is only slightly less accurate than the likelihood approach.
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Appendix

MAXIMUM LIKELIHOOD ESTIMATES

The likelihood function is given by
m n

L = F; (Xij-Bj W,+ Cj U,-D 1 S, + EJT,)2

m n

+S I (Y - Cj Wi- Bj U,-EjS - D T,)2 (Al)

If HI is true, Aj2 = 0 and hence Dj - Ej = 0. In this case, Eq. (Al) reduces to
m n

L = F & (Xiy-By + u) 2

+ S (YU- CjW,-BjU,)2 .
j-1 n-i

Then the maximum likelihood estimates are found by solving the equations

a L aL
a =j a =C

Taking the derivatives yields the equations

aaB = '-2W (Xij - Bj Wi + CJ U) + ;2 U ( Yu-C Wj - B U) =0

and

011 = N 2 U; (X -Bj Wi + Cj U) + 2 W, ( Yj,-Cj W,-Bj U) =O.

Rearranging terms and noting Wj2 + Uj2 = 1 yields the solution

B= lj(WX, + iu/

n

Cj = (Wj YYU- UXuj)/n.
I-1

If H2 is true, the maximum likelihood estimates are found by solving the equations

a L = aL _ aL _ a L -
aBj 8c1 - aDj - Ej

Taking the derivatives yields the equations

aaB = N-2WXV-B-W, + CjUj-DjS1 + EjT7)

+ j-2U1 (Y - CjWj-BjU-EJS-DjT) = 0,

11
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OC n 2 Uj (Xuj- B Wj + Cj U - DjSi + Ej T)
a C:

+ Y-2W,(Y, 1 - CjWI-Bj U,-EjS,-DDT) =O,
i-I

aaD = N2S,(XzyBW+CU-y y

+ E-2T 1 (Y 1 - C1W,-B1U-E 1S,-D1T) =O

aa = - 2S,(XU-B1 W + CjU,-DjS, + ET)+ i;- 2 S( Yjj- Cj W- Bj U- EjSi- D T) = O

I-I

Making the following substitutions

I-1
n

G- = Si ( Uz-j T),

G1= £(WY - UWiv,
i-1

n
Hj = (WSX1 + UY),

I-1

I n
Ij = (W, Yuj - U, Xj),

I-1
jj = (Si xi + Tj Yu),

Kj= - (St Yu TIXU),

and rearranging terms yields

nBj + DjF + EG =Hj,

nC; - DG + EjF= I,
BjF -CjG + nDJ =JJ,

and

BjG + CjF + nE,= Kj.
Defining the following vectors and matrices

N. (o ) M=t(FGA

p=_ |BCj Q = |D~j,

R - Hil} Z = |JJ|

12
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allows Eq. (A2) to be rewritten as

NP + MQ=R (A3)

MTP + NQ= Z,

where MT is the transpose of matrix M. Solving Eq. (A3) yields

P = (NR -MZ)/(NN-MMT)
and

Q = (NZ - MTR)/(NN - MTM).

Substituting for the matrices and vectors yields

B1= (nHfj-FJj- GK)/(n2 -F 2 - G)
Cj = (nIj + GJ1 - FKj)/(n' -F 2 -G)
Dj = (nJj -FHj + GI)/(n - F - G2),

and

E>= (nK1 - GHj-FIj)I(n2 -F 2 - 02).
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